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CS 267 Applications of Parallel Computers

Lecture 23: 

Solving Linear Systems arising from PDEs - I

James Demmel

http://www.nersc.gov/~dhbailey/cs267/Lectures

Lect_23_2000.ppt
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Outline

° Review Poisson equation

° Overview of Methods for Poisson Equation

° Jacobi’s method

° Red-Black SOR method

° Conjugate Gradients

° FFT

° Multigrid (next lecture)

Reduce to sparse-matrix-vector multiply
Need them to understand Multigrid
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Poisson’s equation arises in many models

° Heat flow:  Temperature(position, time)

° Diffusion:  Concentration(position, time)

° Electrostatic or Gravitational Potential:
Potential(position)

° Fluid flow: Velocity,Pressure,Density(position,time)

° Quantum mechanics: Wave-function(position,time)

° Elasticity:   Stress,Strain(position,time)
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Relation of Poisson’s equation to Gravity, Electrostatics

° Force on particle at (x,y,z) due to particle at 0 is

      -(x,y,z)/r^3,  where r = sqrt(x  +y  +z  )

° Force is also gradient of potential V = -1/r

     = -(d/dx V, d/dy V, d/dz V) = -grad V

° V satisfies Poisson’s equation (try it!)

2 2 2
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Poisson’s equation in 1D

2    -1

-1    2    -1

      -1     2    -1

             -1    2     -1

                   -1     2

T = 2-1 -1

Graph and “stencil”
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2D Poisson’s equation

° Similar to the 1D case, but the matrix T is now

° 3D is analogous

4    -1           -1

-1    4    -1          -1

      -1     4                 -1

 -1                4     -1          -1

       -1         -1     4    -1          -1

              -1         -1     4                  -1

                   -1                   4    -1

                          -1            -1     4    -1

                                -1             -1     4

T =

4

-1

-1

-1

-1

Graph and “stencil”
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Algorithms for 2D Poisson Equation with N unknowns

Algorithm Serial PRAM Memory     #Procs

° Dense LU N3 N N2 N2

° Band LU N2 N N3/2 N

° Jacobi N2 N N N

° Explicit Inv. N log N N N

° Conj.Grad. N 3/2 N 1/2 *log N N N

° RB SOR N 3/2 N 1/2 N N

° Sparse LU N 3/2 N 1/2 N*log N N

° FFT N*log N log N N N

° Multigrid N log2 N N N

° Lower bound N log N N

PRAM is an idealized parallel model with zero cost communication

2 22
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Short explanations of algorithms on previous slide
° Sorted in two orders (roughly):

• from slowest to fastest on sequential machines

• from most general (works on any matrix) to most specialized (works on matrices “like” Poisson)

° Dense LU: Gaussian elimination; works on any N-by-N matrix

° Band LU: exploit fact that T is nonzero only on sqrt(N) diagonals nearest main
diagonal, so faster

° Jacobi: essentially does matrix-vector multiply by T in inner loop of iterative
algorithm

° Explicit Inverse: assume we want to solve many systems with T, so we can
precompute and store inv(T) “for free”, and just multiply by it

• It’s still expensive!

° Conjugate Gradients: uses matrix-vector multiplication, like Jacobi, but
exploits mathematical properies of T that Jacobi does not

° Red-Black SOR (Successive Overrelaxation): Variation of Jacobi that exploits
yet different mathematical properties of T

• Used in Multigrid

° Sparse LU: Gaussian elimination exploiting particular zero structure of T

° FFT (Fast Fourier Transform): works only on matrices very like T

° Multigrid: also works on matrices like T, that come from elliptic PDEs

° Lower Bound: serial (time to print answer); parallel (time to combine N inputs)

° Details in class notes and www.cs.berkeley.edu/~demmel/ma221
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Comments on practical meshes

° Regular 1D, 2D, 3D meshes
• Important as building blocks for more complicated meshes

• We will discuss these first

° Practical meshes are often irregular
• Composite meshes, consisting of multiple “bent” regular meshes

joined at edges

• Unstructured meshes, with arbitrary mesh points and
connectivities

• Adaptive meshes, which change resolution during solution
process to put computational effort where needed

° In later lectures we will talk about some methods on
unstructured meshes; lots of open problems
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Composite mesh from a mechanical structure
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Converting the mesh to a matrix
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Irregular mesh: NASA Airfoil in 2D (direct solution)
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Irregular mesh: Tapered Tube (multigrid)
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Adaptive Mesh Refinement (AMR)

°Adaptive mesh around an explosion
°John Bell and Phil Colella at LBL (see class web page for URL)
°Goal of Titanium is to make these algorithms easier to implement

in parallel
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Jacobi’s Method

° To derive Jacobi’s method, write Poisson as:

    u(i,j) = (u(i-1,j) + u(i+1,j) + u(i,j-1) + u(i,j+1) + b(i,j))/4

° Let u(i,j,m) be approximation for u(i,j) after m steps

   u(i,j,m+1) = (u(i-1,j,m) + u(i+1,j,m) + u(i,j-1,m) +

                        u(i,j+1,m) + b(i,j)) / 4

° I.e., u(i,j,m+1) is a weighted average of neighbors

° Motivation: u(i,j,m+1) chosen to exactly satisfy
equation at (i,j)

° Convergence is proportional to problem size, N=n2

• See http://www.cs.berkeley.edu/~demmel/lecture24 for details

° Therefore, serial complexity is O(N2)
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Parallelizing Jacobi’s Method

° Reduces to sparse-matrix-vector multiply by (nearly) T

       U(m+1) = (T/4 - I) * U(m) + B/4

° Each  value of U(m+1) may be updated independently
• keep 2 copies for timesteps m and m+1

° Requires that boundary values be communicated
• if each processor owns n2/p elements to update

• amount of data communicated, n/p per neighbor, is relatively small
if n>>p
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Successive Overrelaxation (SOR)

° Similar to Jacobi: u(i,j,m+1) is computed as a linear
combination of neighbors

° Numeric coefficients and update order are different

° Based on 2 improvements over Jacobi
• Use “most recent values” of u that are available, since these are

probably more accurate

• Update value of u(m+1) “more aggressively” at each step

° First, note that while evaluating sequentially
• u(i,j,m+1) = (u(i-1,j,m) + u(i+1,j,m) …

   some of the values are for m+1 are already available
• u(i,j,m+1) = (u(i-1,j,latest) + u(i+1,j,latest) …

   where latest is either m or m+1
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Gauss-Seidel

° Updating left-to-right row-wise order, we get the
Gauss-Seidel algorithm

for i = 1 to n

  for j = 1 to n

      u(i,j,m+1) = (u(i-1,j,m+1) + u(i+1,j,m) + u(i,j-1,m+1) + u(i,j+1,m)

                          + b(i,j)) / 4

° Cannot be parallelized, because of dependencies, so
instead we use a “red-black” order

forall black points u(i,j)

   u(i,j,m+1) = (u(i-1,j,m) + …

forall red points u(i,j)

   u(i,j,m+1) = (u(i-1,j,m+1) + …

° For general graph, use graph coloring
°Graph(T) is bipartite =>  2 colorable (red and black)
° Nodes for each color can be updated simultaneously
° Still Sparse-matrix-vector multiply, using submatrices
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Successive Overrelaxation (SOR)

° Red-black Gauss-Seidel converges twice as fast as Jacobi, but
there are twice as many parallel steps, so the same in practice

° To motivate next improvement, write basic step in algorithm as:

        u(i,j,m+1) = u(i,j,m) + correction(i,j,m)

° If “correction” is a good direction to move, then one should move
even further in that direction by some factor w>1

        u(i,j,m+1) = u(i,j,m) + w * correction(i,j,m)

° Called successive overrelaxation (SOR)

° Parallelizes like Jacobi (Still sparse-matrix-vector multiply…)

° Can prove w = 2/(1+sin(ππππ/(n+1)) )  for best convergence
• Number of steps to converge  = parallel complexity = O(n), instead of O(n2)

for Jacobi

• Serial complexity O(n3) = O(N3/2), instead of O(n4) = O(N2) for Jacobi
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Conjugate Gradient (CG) for solving A*x = b

° This method can be used when the matrix A is
• symmetric, i.e., A = AT

• positive definite, defined equivalently as:

- all eigenvalues are positive

- xT * A * x > 0 for all nonzero vectors s

- a Cholesky factorization, A = L*LT exists

° Algorithm maintains 3 vectors
• x = the approximate solution, improved after each iteration

• r = the residual, r = A*x - b

• p = search direction, also called the conjugate gradient

° One iteration costs
• Sparse-matrix-vector multiply by A (major cost)

• 3 dot products, 3 saxpys (scale*vector + vector)

° Converges in O(n) = O(N1/2) steps, like SOR
• Serial complexity  = O(N3/2)

• Parallel complexity = O(N1/2 log N),     log N factor from dot-products
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Summary of Jacobi, SOR and CG

° Jacobi, SOR, and CG all perform sparse-matrix-vector
multiply

° For Poisson, this means nearest neighbor
communication on an  n-by-n  grid

° It takes n = N1/2 steps for information to travel across
an n-by-n grid

° Since solution on one side of grid depends on data on
other side of grid faster methods require faster ways
to move information

• FFT

• Multigrid
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Solving the Poisson equation with the FFT

° Motivation: express continuous solution as Fourier series

• u(x,y) = ΣΣΣΣi ΣΣΣΣk  uik sin(ππππ ix) sin(ππππ ky)

• uik called Fourier coefficient of u(x,y)

° Poisson’s equation δδδδ2u/δδδδx2 + δδδδ2u/δδδδy2 = b  becomes

ΣΣΣΣi ΣΣΣΣk  (-ππππi2 - ππππk2) uik sin(ππππ ix) sin(ππππ ky)

                 =   =   =   =  ΣΣΣΣi ΣΣΣΣk  bik sin(ππππ ix) sin(ππππ ky)

°  where bik are Fourier coefficients of b(x,y)

° By uniqueness of Fourier series, uik = bik / (-ππππi2 - ππππk2)

° Continuous Algorithm (Discrete Algorithm)
° Compute Fourier coefficient bik of right hand side

° Apply 2D FFT to values of b(i,k) on grid

° Compute Fourier coefficients uik of solution

° Divide each transformed b(i,k) by  function(i,k)

° Compute solution u(x,y) from Fourier coefficients

° Apply 2D inverse FFT to values of b(i,k)
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Serial FFT

° Let i=sqrt(-1) and index matrices and vectors from 0.

° The Discrete Fourier Transform of an m-element
vector v is:

                      F*v

 Where F is the m*m matrix defined as:

                     F[j,k] = ϖϖϖϖ (j*k)

 Where  ϖ ϖ ϖ ϖ  is:

                   ϖϖϖϖ = e (2ππππi/m) = cos(2ππππ/m) + i*sin(2ππππ/m)

° This is a complex number with whose mth power is 1
and is therefore called the mth root of unity

° E.g., for m = 4:

           ϖϖϖϖ = 0+1*i, ϖϖϖϖ2222 = -1+0*i, ϖϖϖϖ3333 = 0-1*i, ϖϖϖϖ4444 = 1+0*i,
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Using the 1D FFT for filtering

° Signal = sin(7t) + .5 sin(5t) at 128 points

° Noise = random number bounded by .75

° Filter by zeroing out FFT components < .25
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Using the 2D FFT for image compression

° Image = 200x320 matrix of values

° Compress by keeping largest 2.5% of FFT
components
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Related Transforms

° Most applications require multiplication by both F
and inverse(F).

° Multiplying by F and inverse(F) are essentially the
same.  (inverse(F) is the complex conjugate of F
divided by n.)

° For solving the Poisson equation and various other
applications, we use variations on the FFT

• The sin transform -- imaginary part of F

• The cos transform -- real part of F

° Algorithms are similar, so we will focus on the
forward FFT.
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Serial Algorithm for the FFT

° Compute the FFT of an m-element vector v, F*v

      (F*v)[j] =  ΣΣΣΣ        F(j,k)*v(k)

                  =  ΣΣΣΣ        ϖϖϖϖ (j*k) * v(k)

                  =  ΣΣΣΣ        (ϖϖϖϖ j)k * v(k)

                  =  V(ϖ ϖ ϖ ϖ j)

° Where V is defined as the polynomial

           V(x) = ΣΣΣΣ        xk * v(k)

m-1

k = 0

m-1

k = 0

m-1

k = 0

m-1

k = 0
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Divide and Conquer FFT

° V can be evaluated using divide-and-conquer

           V(x) = ΣΣΣΣ        (x)k * v(k)

                   =          v[0] + x2*v[2] + x4*v[4] + …

                        + x*(v[1] + x2*v[3] + x4*v[5] + … )

                   = Veven(x2) + x*Vodd(x2)

° V has degree m, so Veven and Vodd are polynomials of
degree m/2-1

° We evaluate these at points (ϖ ϖ ϖ ϖ j)2 for 0<=j<=m-1

° But this is really just m/2 different points, since

    (ϖϖϖϖ (j+m/2) )2 = (ϖϖϖϖ j *ϖ ϖ ϖ ϖ m/2) )2 = (ϖϖϖϖ 2j *ϖ ϖ ϖ ϖ ) = (ϖϖϖϖ j)2

m-1

k = 0
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Divide-and-Conquer FFT

FFT(v, v, m)

   if m = 1 return v[0]

   else

      veven = FFT(v[0:2:m-2], ϖ ϖ ϖ ϖ 2, m/2)

      vodd   = FFT(v[1:2:m-1], ϖ ϖ ϖ ϖ 2, m/2)

      ϖϖϖϖ-vec = [ϖϖϖϖ0, ϖϖϖϖ1, … ϖϖϖϖ (m/2-1) ]

      return  [veven + (ϖϖϖϖ-vec .* vodd),

                    veven -  (ϖϖϖϖ-vec .* vodd) ]

° The .* above is component-wise multiply.

° The […,…] is construction an m-element vector from 2 m/2
element vectors

This results in an O(m log m) algorithm.

precomputed
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An Iterative Algorithm

° The call tree of the d&c FFT algorithm is a complete
binary tree of log m levels

° Practical algorithms are iterative, going across each
level in the tree starting at the bottom

° Algorithm overwrites v[i] by (F*v)[bitreverse(i)]

FFT(0,1,2,3,…,15) = FFT(xxxx)

FFT(1,3,…,15) = FFT(xxx1)FFT(0,2,…,14) = FFT(xxx0)

FFT(xx10) FFT(xx10) FFT(xx11)FFT(xx00)

FFT(x100) FFT(x010) FFT(x110) FFT(x001) FFT(x101) FFT(x011) FFT(x111)FFT(x000)

FFT(0)  FFT(8)  FFT(4)  FFT(12)  FFT(2) FFT(10) FFT(6) FFT(14) FFT(1) FFT(9) FFT(5)  FFT(13)  FFT(3)  FFT(11)  FFT(7) FFT(15)
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Parallel 1D FFT

° Data dependencies in
1D FFT

• Butterfly pattern

° A PRAM algorithm
takes O(log m) time

• each step to right is
parallel

• there are log m steps

° What about
communication cost?

° See LogP paper for
details
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Block Layout of 1D FFT

° Using a block layout
(m/p contiguous elts per
processor)

° No communication in
last log m/p steps

° Each step requires fine-
grained communication
in first log p steps
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Cyclic Layout of 1D FFT

° Cyclic layout (only 1
element per
processor, wrapped)

° No communication
in first log(m/p)
steps

° Communication in
last log(p) steps
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Parallel Complexity

° m = vector size, p = number of processors

° f = time per flop = 1

°  αααα = startup for message (in f units)

°  ββββ = time per word in a message (in f units)

° Time(blockFFT) = Time(cyclicFFT) =

       2*m*log(m)/p

      + log(p) * αααα

      + m*log(p)/p * ββββ
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FFT With “Transpose”

° If we start with a cyclic
layout for first log(p)
steps, there is no
communication

° Then transpose the
vector for last log(m/p)
steps

° All communication is
in the transpose
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Why is the Communication Step Called a Transpose?

° Analogous to transposing an array

° View as a 2D array of n/p by p

° Note: same idea is useful for uniprocessor caches
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Complexity of the FFT with Transpose

° If communication is not overlapped

° Time(transposeFFT) =

       2*m*log(m)/p                               same as before

      + (p-1) * α                                          α                                          α                                          α                                          was log(p) * αααα

      + m*(p-1)/p2 * β                                β                                β                                β                                was m* log(p)/p    ∗ β∗ β∗ β∗ β

° Transpose version sends less data, but more
messages

° If communication is overlapped, so we do not pay
for p-1 messages, the second term becomes simply
αααα, rather than (p-1)αααα.

° This is close to optimal.  See LogP paper for details.
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Comment on the 1D Parallel FFT

° The above algorithm leaves data in bit-reversed order
• Some applications can use it this way, like Poisson

• Others require another transpose-like operation

• Is the computation location-dependent?

° Other parallel algorithms also exist
• A very different 1D FFT is due to Edelman (see  http://www-

math.mit.edu/~edelman)

• Based on the Fast Multipole algorithm

• Less communication for non-bit-reversed algorithm
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Higher Dimension FFTs

° FFTs on 2 or 3 dimensions are define as 1D FFTs on
vectors in all dimensions.

° E.g., a 2D FFT does 1D FFTs on all rows and then all
columns

° There are 3 obvious possibilities for the 2D FFT:
• (1) 2D blocked layout for matrix, using 1D algorithms for each row

and column

• (2) Block row layout for matrix, using serial 1D FFTs on rows,
followed by a transpose, then more serial 1D FFTs

• (3) Block row layout for matrix, using serial 1D FFTs on rows,
followed by parallel 1D FFTs on columns

• Option 1 is best

° For a 3D FFT the options are similar
• 2 phases done with serial FFTs, followed by a transpose for 3rd

• can overlap communication with 2nd phase in practice


